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We consider the restricted solid-on-soll®@SOS type surface growth models and classify them into dy-
namic universality classes according to their symmetry and conservation law. Four groups of RSOS-type
microscopic models—asymmetri8), asymmetric-conserve@\C), symmetric(S), and symmetric-conserved
(SO groups—are introduced and the corresponding stochastic differential equ&DES are derived. Ana-
lyzing these SDEs using dynamic renormalization group theory, we confirm the previous results that A-RSOS,
AC-RSOS, and S-RSOS groups belong to the Kardar-Parisi-Zhang class, the Villain—Lai—Das Sarma class,
and the Edwards-Wilkinson class, respectively. We also find that SC-RSOS group belongs to a new universality
class featuring the conserved-cubic nonlinearity.
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Universality is one of the most important features in mod-the several variants of RSOS-type growth models and clas-
ern theory of critical phenomena because various models caify these models into universality classes according to their
be classified purely in terms of their collective behavior intosymmetry and conservation law. First, we introduce discrete
classes insensitive to details of microscopic structure and inmodels satisfying the RSOS constraint. These models are
teractions. The theory of critical phenomena and universahamed depending on local growth rules: asymmetric-RSOS
behavior are quite well understood in equilibrium systemsmodel(A-RSOS, asymmetric-conserved-RSOS mod&C-

[1]. We can use renormalization gro(RG) theory to clas- RSOS, symmetric-RSOS modéB-RSO$, and symmetric-
sify the different systems into universality classes. The dif-conserved-RSOS modelSC-RSO$. Symmetric models
ferent universality classes are characterized only by a smallave growth rules which preserves height-inversion symme-
set of basic features—spatial dimensionality, dimensionalityfry and conserved models have growth rules in which the
and symmetry of the order parameter, and whether the intetrial move (adsorption or desorptigns not rejected, keeping
actions are long or short range. The situation is not so cleahe particle flux conserved. We apply a hard-core bosonic
in the framework of nonequilibrium systems because there i§eld theoretical formalism developed by the authors for
no general theory available to describe nonequilibrium systhese models and derive corresponding stochastic differential
tems. Most of the known results are based on numericaquations(SDES for each surface growth modg?,8]. We
simulations. However, the concept of universality appears téhen analyze these SDEs using the dynamic RG theory and
be relevant although we do not completely understand howlassify models into their universality classes.

the universality classes are characterized in nonequilibrium The RSOS model is one of the simplest microscopic
systems. Again, the basic ingredients affecting the universagrowth modelg9]. It describes the growth of simple cubic
ity classes may be the collective behavior of systems, spati@urfaces, in which the height difference between any nearest
dimensionality, symmetries, and conservation laws. neighbor pair does not exceed some valiee RSOS con-

In this paper, we address the issue of how to classify thétrain). We limit ourselves to the case wherein the height
restricted solid-on-solidRSOS type nonequilibrium surface difference between two nearest neighbors is not larger than
growth models into different dynamic universality classes byl. For ease of explanation, we introduce some nomencla-
concentrating on the symmetry and the conservation law. Kitures. If a site satisfies the RSOS constraint after the height
netic surface roughening of nonequilibrium surface growthincrease(decreasgby 1, we call the site “adsorptivéero-
has been investigated using various discrete models and cosive).” For example, a sitem whose height satisfiehy,
tinuous equationf2]. Comprehension of nonequilibrium sur- —1)—h,.4|<1 in a one-dimensional lattice is erosive, and
face growth plays an important role in understanding ando forth. A site is “active,” if a site is either adsorptive or
controlling many interesting interface processes, such as varosive. The model we are describing has two paramgters,
por deposition 3], crystal growth[4], and molecular beam andl. pis the probability with which adsorption occurs at an
epitaxy (MBE) [5]. During the MBE growth process, the arbitrarily chosen site andis the search rangesee below
solid-on-solid growth condition is applied without defects, The growth algorithm for a one-dimensional system is as
such as overhangs and vacancies. Various discrete modéd¥lows:
describing the kinetic properties of the MBE surface growth (i) We choose a siten randomly.
process have been proposed and studied by intensive numeri- (i) With probability p, the adsorption is tried. The erosion
cal simulations. will be attempted with probabilityj=1—p.

While the generic nonequilibrium surface growth models (iii) Check if sitem is active.
that allow for overhangs and vacancies are theoretically ac- (iv) If site mis active, the height at site is changed by
cepted to belong to the Kardar-Parisi-ZhafPZ) univer-  the dynamics determined at stép. If site m is not active,
sality class[6], there is no such consensus for classifyingwe search for an active site in the interval froam-1 to m
growth models of the MBE growth processes. We investigatet|. If an active site is found in this interval, the height at the
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nearest active site fromm is changed(If there are two active As in Ref.[11], we use an integer to indicate the location of
sites having the same distance fromsite to be updated is particles and a half integer for the height configuration. The

decided with equal probabilityIf an active site is not found

role of the rejection operatok,(E,) is to check if the site

within this interval, the trial move is rejected and the systemy 1 1/2 is not adsorptivéerosive, that is, if the siten+1/2 is

remains unchanged.
(v) After the dynamicgadsorption, desorption, or rejec-
tion), time is increased by IL/ whereL is the system size.
The model withl=0 andp=1 corresponds to the origi-
nal RSOS mode[9] and the model witH=«~ and p=1
corresponds to the conserved-RS@SRSOS model [10].
Recently, the models with nonvanishing finitefor p=1

adsorptive(erosive in a configuration|C), A(E,)|C)=0,
and otherwiseA,(E,)|C)=|C). The adsorption(erosion
operatorlﬁn(?:n) describes the configuration change after a
successful adsorptioterosion. a,(b,) is the annihilation

operator of anA(B) particle at siten anda/ (b is the cor-
responding creation operator, satisfying the mixed commuta-

were shown to belong to the same universality class as thgon relations[7],

RSOS model by the authof8,11]. If p#1, then the role of
desorption is problematic. It has been argyi#gd] that ero-
sion generates the surface tension term. This implies that

 aal—b,bl—1,~ala,~bb,, a,b,—albl=0. (4)

p#1, the system may be described by SDE with a tension
term. In what follows, we show that this is not the case.All operators at different sites commute with each other.

Hence, we classify the variants of the RSOS model intro-

We apply the method recently introduced by us to find the

duced above into four groups according to the conservatio®DEs for the above microscopic modél11]. This proce-

and the symmetry. We name each group as follogs {
—p): A-RSOS model with finitel and p#qg, AC-RSOS
model with infinitel and p#q, S-RSOS model with finité
andp=gq, and SC-RSOS model with infiniteand p=gq.

dure is very similar to that in Ref.11]. Thus, we briefly
sketch the procedure in this papghe detailed calculation
may be found elsewhergl3]). We first derive the lattice
version of the SDEs for densities, andb,, of particle spe-

The model introduced can be mapped onto the reactiorciesA andB. We find the Kramers-Moyal coefficients via the
diffusion system of two-species hard-core particles, since theommutation relations between the Hamiltonian and the
height difference between two neighbors is restricted to benumber operators by deriving the time evolutions of the one-

—1,0,and 1. The step ugtep downis mapped to ai (B)

point and two-point correlation functions of the number op-

particle and if two neighbors have equal height, a particleeratorsa'a, andb'b,, using the Hamiltonian in E¢(1), and

vacuum is located between two sifdd]. According to this
mapping, the dynamics with the search rahgand adsorp-
tion (erosion probability p (g) can be described by the mas-
ter equation in the form of thémaginary time Schralinger
equation 9/ dt|W;ty=—H|W;t) for the state vectofW;t)
=3.P(C;t)|C), whereP(C;t) is the probability with which
the system is in staté at timet, the sum is over all possible
states, and(=3,H,), called a Hamiltonian, is an evolu-
tion operator given by

Ho=p(i—A,~DlIp+q—E,~ENMIS, (D)
where
1 2l i i
=i+ (H At 11 An_k),
j=1 \ k=1 k=1
1 2l j i
Mi=i+3 (H vt 11 En_k), )
i=1 \ k=1 k=1
and
S N SN St
An=a an,t+ b bnri—ananbn1bns1,
En:B§Bn+é—$+15—n+1_BEBné—LléMl'
ﬁn:(él—'—ﬁn)(énﬁ—l—’—ﬁl#—l)a
En=(bl+ay) (b1 +aly). (3)

comparing with the formal time evolutions of the correlation
functions obtained from the Kramers-Moyal coefficients us-
ing the Fokker-Planck equation. We obtain the Fokker-
Planck equation with the Kramers-Moyal coefficients in
terms of densities from these commutation relations. These
coefficients describe the time evolution of the probability of
finding the system in a certain state with given densities.
Once the Fokker-Planck equation is known for the system,
the corresponding SDEs for densities can be derived follow-
ing the standard method4—-16. Next, we introduce two
quantitiesp, and S, defined as

prn=antb,, Sy=a,—b,, 6)
which are step density and slope, respectively. The step den-
sity saturates fast due to the mass term present in the SDE for
the step densitys,. As a result, the step density in the sta-
tionary state becomes a slave field of the slope, and takes the
form

P=po+ modS+ 0oSP+NgdSP+ - - -, (6)

wherepg, pg, 69, and\y are appropriate functions @ g,
andl to be determined. The SDE for the slope gives the SDE
for the height fielch of the surface vi&s=Vh in one dimen-
sion. Following thefigurization described in Ref[11] and
performing continuum limit, we obtain the continuum SDE
for the height field.

The SDE for the A-RSOS model is the KPZ equation
[6.8]
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and the SDE for the AC-RSOS model is the Villain—Lai—Das 4 d(d+2)
Sarma(VLD) equation[17] whereg=K4AY9"2\D/v? is the expansion parameter afid
H is the scaling parameter of DRG. The one-loop diagrams
AL Sy 2 contributing to the flow equations are shown in Figs. 2 and 3.
ot VAPV V)] + 7. ®) Equation(11b) is exact since the SDE9) consists of the

conserved deterministic part and the nonconserved noise.

The extreme asymmetric casps-1, q=0 of these models ~ The fixed point ofg is determined by the equation
are dlscgssed in Ref§8,11]. We also fl_nd tha_t asymmetric dlng 3d2+ 14d+ 28
cases withp+# q belong to the same universality class as the —e— g, (12
extreme asymmetric cagé3]. In the SDE for the S-RSOS ot d(d+2)
model, since the KPZ term violates the up-down symmetry, _

. ; wh =2—-d. H ,
the coefficient of the KPZ term vanishes and the next rel- eree d. Hence

evant term in the SDE is the cubic ter¥h: (Vh)3 which is (d+2)2 d2+5d+12
irrelevant in all dimensions. Thus, the corresponding SDE to  z=4— ————— ¢, =1+ ———F—=¢.
the S-RSOS model is the Edwards-Wilkins@W) equation 3d°+14d+28 3d°+14d+28

[18], in which the nonlineaix term is absent in the KPZ (13
equation. Finally, the SDE for the SC-RSOS model is fOUI"IQn one dimension, we fing=19/5 anda=7/5. For alld
to be =2,z=4 anda=1.
X We also performed the numerical simulations for the SC-
d RSOS model in one dimension. In Fig. 4, the scaling plot
gt ~ VAV AV (V)] + 7, ©  shows the data collapse of the model. The system sizes in the
simulations are 64, 90, 128, 256, 360, and 512. Although, the
where v=(8—32)/2, \=(32-942)/8, andy is a white  best collapse occurs far=1.03, we cannot exclude the pos-
noise with correlation(5(x,t) n(x’,t"))=2D&(x—x’)s(t  Sibility that «=1. The calculatedr is not decisive in one
—t') with D=(2 \/5_ 1)/4. This equation is symmetric un- c_llmen5|on since Eq13) is obtalne_d from the DRG calc_ula-
der the inversion of the height field, that is, underth— tion only up to one-loop order. Still, SC-RSOS model is not

—h, Eq.(9) is invariant, and the cubic term in the equation is
marginal in two dimensions. We analyze this equation by
deriving the Martin-Siggia-RoséMSR) action using the
conjugate fieldh to the height fieldh and applying the dy-

namic renormalization grouRG) theory[19,20. The cor-
responding MSR action iS= [dtdx.L with

L=h(d+vVHh—AV(V2h)-(Vh)3—Dh?, (10 i :‘ i : i : : :

where we performed the partial integration and dropped the
surface term. In Fig. 1, two vertices in the MSR action are

depicted. The incoming arrow stands for the height field
the outgoing arrow for the conjugate field and the line
segments on the arrows represent the spatial derivative of th
fields.

Using the Wilson DRG method, the flow equations for the
parameterss, N\, andD, to one-loop order are FIG. 3. One-loop contribution to the vertex.
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FIG. 4. Log-log plot of the data collapse for Monte Carlo simu-
lation of the SC-RSOS model. The best collapse occursafor
=1.03 andz=2a+1=23.06.
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symmetry and conservation, using both analytical and nu-
merical methods. We confirmed the previous results that the
A-RSOS model belongs to the KPZ class, the AC-RSOS
model to the VLD class, the S-RSOS model to the EW class.
We also derived the stochastic differential equations for the
SC-RSOS model analytically and found that the SC-RSOS
model belongs to the new class which we call “conserved
cubic” (CC) class. The SDE corresponding to the SC-RSOS
model of the CC class has the conserved form of the EW
term V2(V2h) and the Gaussian noigaot conserved forin
similar to the SDE of the VLD class, but it has the conserved
form of the cubic terniV2V - (Vh)3, which is absent in the
EW class, in the KPZ class, and in the VLD class. The con-
served cubic term is less relevant than the conserved KPZ
term V2(Vh)? in the VLD equation and is irrelevant in all
dimensions in the EW and KPZ equations. In addition to
identifying the corresponding SDEs for each microscopic
model, we found coefficients of the EW term, the KPZ term,
the VLD term, and the CC term. Coefficients of the EW and
KPZ terms have been shown to be consistent with the previ-
ous numerical studj21]. Verifying the consistency of coef-

believed to share the same universality class as the VLR ients of the VLD and CC terms by the numerical study
equation, because these two systems have different symmgi pe a future challenge for the interested.

try.

In summary, we studied four different kinds of the RSOS-
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