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Universality classification of restricted solid-on-solid type surface growth models
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We consider the restricted solid-on-solid~RSOS! type surface growth models and classify them into dy-
namic universality classes according to their symmetry and conservation law. Four groups of RSOS-type
microscopic models—asymmetric~A!, asymmetric-conserved~AC!, symmetric~S!, and symmetric-conserved
~SC! groups—are introduced and the corresponding stochastic differential equations~SDEs! are derived. Ana-
lyzing these SDEs using dynamic renormalization group theory, we confirm the previous results that A-RSOS,
AC-RSOS, and S-RSOS groups belong to the Kardar-Parisi-Zhang class, the Villain–Lai–Das Sarma class,
and the Edwards-Wilkinson class, respectively. We also find that SC-RSOS group belongs to a new universality
class featuring the conserved-cubic nonlinearity.
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Universality is one of the most important features in mo
ern theory of critical phenomena because various models
be classified purely in terms of their collective behavior in
classes insensitive to details of microscopic structure and
teractions. The theory of critical phenomena and unive
behavior are quite well understood in equilibrium syste
@1#. We can use renormalization group~RG! theory to clas-
sify the different systems into universality classes. The d
ferent universality classes are characterized only by a s
set of basic features—spatial dimensionality, dimensiona
and symmetry of the order parameter, and whether the in
actions are long or short range. The situation is not so c
in the framework of nonequilibrium systems because ther
no general theory available to describe nonequilibrium s
tems. Most of the known results are based on numer
simulations. However, the concept of universality appear
be relevant although we do not completely understand h
the universality classes are characterized in nonequilibr
systems. Again, the basic ingredients affecting the univer
ity classes may be the collective behavior of systems, sp
dimensionality, symmetries, and conservation laws.

In this paper, we address the issue of how to classify
restricted solid-on-solid~RSOS! type nonequilibrium surface
growth models into different dynamic universality classes
concentrating on the symmetry and the conservation law.
netic surface roughening of nonequilibrium surface grow
has been investigated using various discrete models and
tinuous equations@2#. Comprehension of nonequilibrium su
face growth plays an important role in understanding a
controlling many interesting interface processes, such as
por deposition@3#, crystal growth@4#, and molecular beam
epitaxy ~MBE! @5#. During the MBE growth process, th
solid-on-solid growth condition is applied without defec
such as overhangs and vacancies. Various discrete mo
describing the kinetic properties of the MBE surface grow
process have been proposed and studied by intensive nu
cal simulations.

While the generic nonequilibrium surface growth mod
that allow for overhangs and vacancies are theoretically
cepted to belong to the Kardar-Parisi-Zhang~KPZ! univer-
sality class@6#, there is no such consensus for classifyi
growth models of the MBE growth processes. We investig
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the several variants of RSOS-type growth models and c
sify these models into universality classes according to th
symmetry and conservation law. First, we introduce discr
models satisfying the RSOS constraint. These models
named depending on local growth rules: asymmetric-RS
model~A-RSOS!, asymmetric-conserved-RSOS model~AC-
RSOS!, symmetric-RSOS model~S-RSOS!, and symmetric-
conserved-RSOS model~SC-RSOS!. Symmetric models
have growth rules which preserves height-inversion symm
try and conserved models have growth rules in which
trial move~adsorption or desorption! is not rejected, keeping
the particle flux conserved. We apply a hard-core boso
field theoretical formalism developed by the authors
these models and derive corresponding stochastic differe
equations~SDEs! for each surface growth model@7,8#. We
then analyze these SDEs using the dynamic RG theory
classify models into their universality classes.

The RSOS model is one of the simplest microsco
growth models@9#. It describes the growth of simple cubi
surfaces, in which the height difference between any nea
neighbor pair does not exceed some value~the RSOS con-
straint!. We limit ourselves to the case wherein the heig
difference between two nearest neighbors is not larger t
1. For ease of explanation, we introduce some nomen
tures. If a site satisfies the RSOS constraint after the he
increase~decrease! by 1, we call the site ‘‘adsorptive~ero-
sive!.’’ For example, a sitem whose height satisfiesu(hm
21)2hm61u<1 in a one-dimensional lattice is erosive, an
so forth. A site is ‘‘active,’’ if a site is either adsorptive o
erosive. The model we are describing has two parametep
andl. p is the probability with which adsorption occurs at a
arbitrarily chosen site andl is the search range~see below!.
The growth algorithm for a one-dimensional system is
follows:

~i! We choose a sitem randomly.
~ii ! With probabilityp, the adsorption is tried. The erosio

will be attempted with probabilityq512p.
~iii ! Check if sitem is active.
~iv! If site m is active, the height at sitem is changed by

the dynamics determined at step~ii !. If site m is not active,
we search for an active site in the interval fromm2 l to m
1 l . If an active site is found in this interval, the height at t
©2003 The American Physical Society03-1
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nearest active site fromm is changed.~If there are two active
sites having the same distance fromm, site to be updated is
decided with equal probability!. If an active site is not found
within this interval, the trial move is rejected and the syst
remains unchanged.

~v! After the dynamics~adsorption, desorption, or rejec
tion!, time is increased by 1/L, whereL is the system size.

The model withl 50 andp51 corresponds to the origi
nal RSOS model@9# and the model withl 5` and p51
corresponds to the conserved-RSOS~C-RSOS! model @10#.
Recently, the models with nonvanishing finitel for p51
were shown to belong to the same universality class as
RSOS model by the authors@8,11#. If pÞ1, then the role of
desorption is problematic. It has been argued@12# that ero-
sion generates the surface tension term. This implies th
pÞ1, the system may be described by SDE with a tens
term. In what follows, we show that this is not the cas
Hence, we classify the variants of the RSOS model int
duced above into four groups according to the conserva
and the symmetry. We name each group as follows (q51
2p): A-RSOS model with finitel and pÞq, AC-RSOS
model with infinitel andpÞq, S-RSOS model with finitel
andp5q, and SC-RSOS model with infinitel andp5q.

The model introduced can be mapped onto the react
diffusion system of two-species hard-core particles, since
height difference between two neighbors is restricted to
21, 0, and 1. The step up~step down! is mapped to anA (B)
particle and if two neighbors have equal height, a parti
vacuum is located between two sites@11#. According to this
mapping, the dynamics with the search rangel and adsorp-
tion ~erosion! probabilityp ~q! can be described by the ma
ter equation in the form of the~imaginary time! Schrödinger
equation]/]tuC;t&52ĤuC;t& for the state vectoruC;t&
[(CP(C;t)uC&, whereP(C;t) is the probability with which
the system is in stateC at timet, the sum is over all possible
states, andĤ(5(nĤn), called a Hamiltonian, is an evolu
tion operator given by

Hn5p~ Î 2Ân2D̂n!P̂n
A1q~ Î 2Ên2 Ên!P̂n

E, ~1!

where

Pn
A5 Î 1

1

2 (
j 51

2l S )
k51

j

Ân1k1)
k51

j

Ân2kD ,

Pn
E5 Î 1

1

2 (
j 51

2l S )
k51

j

Ên1k1)
k51

j

Ên2kD , ~2!

and

Ân5ân
†ân1b̂n11

† b̂n112ân
†ânb̂n11

† b̂n11 ,

Ên5b̂n
†b̂n1ân11

† ân112b̂n
†b̂nân11

† ân11 ,

D̂n5~ ân
†1b̂n!~ ân111b̂n11

† !,

Ên5~ b̂n
†1ân!~ b̂n111ân11

† !. ~3!
01010
he
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n
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n
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As in Ref. @11#, we use an integer to indicate the location
particles and a half integer for the height configuration. T
role of the rejection operatorÂn(Ên) is to check if the site
n11/2 is not adsorptive~erosive!, that is, if the siten11/2 is
adsorptive~erosive! in a configurationuC&, Ân(Ên)uC&50,
and otherwiseÂn(Ên)uC&5uC&. The adsorption~erosion!
operatorD̂n( Ên) describes the configuration change after
successful adsorption~erosion!. ân(b̂n) is the annihilation
operator of anA(B) particle at siten and ân

†(b̂n
†) is the cor-

responding creation operator, satisfying the mixed commu
tion relations@7#,

ânân
†5b̂nb̂n

†5 Î n2ân
†ân2b̂n

†b̂n , ânb̂n5ân
†b̂n

†50. ~4!

All operators at different sites commute with each other.
We apply the method recently introduced by us to find

SDEs for the above microscopic model@7,11#. This proce-
dure is very similar to that in Ref.@11#. Thus, we briefly
sketch the procedure in this paper~the detailed calculation
may be found elsewhere@13#!. We first derive the lattice
version of the SDEs for densitiesan andbn of particle spe-
ciesA andB. We find the Kramers-Moyal coefficients via th
commutation relations between the Hamiltonian and
number operators by deriving the time evolutions of the o
point and two-point correlation functions of the number o
eratorsân

†ân and b̂n
†b̂n using the Hamiltonian in Eq.~1!, and

comparing with the formal time evolutions of the correlatio
functions obtained from the Kramers-Moyal coefficients u
ing the Fokker-Planck equation. We obtain the Fokk
Planck equation with the Kramers-Moyal coefficients
terms of densities from these commutation relations. Th
coefficients describe the time evolution of the probability
finding the system in a certain state with given densiti
Once the Fokker-Planck equation is known for the syste
the corresponding SDEs for densities can be derived follo
ing the standard method@14–16#. Next, we introduce two
quantitiesrn andSn defined as

rn5an1bn , Sn5an2bn , ~5!

which are step density and slope, respectively. The step
sity saturates fast due to the mass term present in the SDE
the step densitySn . As a result, the step density in the st
tionary state becomes a slave field of the slope, and takes
form

r5r01m0]S1u0S21l0]S31•••, ~6!

wherer0 , m0 , u0, andl0 are appropriate functions ofp, q,
andl to be determined. The SDE for the slope gives the S
for the height fieldh of the surface viaS5“h in one dimen-
sion. Following thefigurization described in Ref.@11# and
performing continuum limit, we obtain the continuum SD
for the height field.

The SDE for the A-RSOS model is the KPZ equati
@6,8#
3-2
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]h

]t
5n¹2h1l~“h!21h, ~7!

and the SDE for the AC-RSOS model is the Villain–Lai–D
Sarma~VLD ! equation@17#

]h

]t
52¹2@n¹2h1l~“h!2#1h. ~8!

The extreme asymmetric casesp51, q50 of these models
are discussed in Refs.@8,11#. We also find that asymmetri
cases withpÞq belong to the same universality class as
extreme asymmetric case@13#. In the SDE for the S-RSOS
model, since the KPZ term violates the up-down symme
the coefficient of the KPZ term vanishes and the next
evant term in the SDE is the cubic term“•(“h)3 which is
irrelevant in all dimensions. Thus, the corresponding SDE
the S-RSOS model is the Edwards-Wilkinson~EW! equation
@18#, in which the nonlinearl term is absent in the KPZ
equation. Finally, the SDE for the SC-RSOS model is fou
to be

]h

]t
52¹2@n¹2h1l“•~“h!3#1h, ~9!

wheren5(823A2)/2, l5(3229A2)/8, andh is a white
noise with correlation^h(x,t)h(x8,t8)&52Dd(x2x8)d(t
2t8) with D5(2A221)/4. This equation is symmetric un
der the inversion of the height fieldh, that is, underh→
2h, Eq.~9! is invariant, and the cubic term in the equation
marginal in two dimensions. We analyze this equation
deriving the Martin-Siggia-Rose~MSR! action using the
conjugate fieldh̄ to the height fieldh and applying the dy-
namic renormalization group~DRG! theory@19,20#. The cor-
responding MSR action isS5*dtdxL with

L5h̄~] t1n¹4!h2l“~¹2h̄!•~“h!32Dh̄2, ~10!

where we performed the partial integration and dropped
surface term. In Fig. 1, two vertices in the MSR action a
depicted. The incoming arrow stands for the height fieldh,
the outgoing arrow for the conjugate fieldh̄, and the line
segments on the arrows represent the spatial derivative o
fields.

Using the Wilson DRG method, the flow equations for t
parametersn, l, andD, to one-loop order are

FIG. 1. Vertices for DRG calculation.
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] ln n

],
5z241

d12

d
g, ~11a!

] ln D

],
5z22a2d, ~11b!

] ln l

],
5z12a262

d216d120

d~d12!
g, ~11c!

whereg[KdLd22lD/n2 is the expansion parameter and,
is the scaling parameter of DRG. The one-loop diagra
contributing to the flow equations are shown in Figs. 2 and
Equation ~11b! is exact since the SDE~9! consists of the
conserved deterministic part and the nonconserved noise

The fixed point ofg is determined by the equation

] ln g

],
5«2

3d2114d128

d~d12!
g, ~12!

where«522d. Hence,

z542
~d12!2

3d2114d128
«, a511

d215d112

3d2114d128
«.

~13!

In one dimension, we findz519/5 anda57/5. For all d
>2, z54 anda51.

We also performed the numerical simulations for the S
RSOS model in one dimension. In Fig. 4, the scaling p
shows the data collapse of the model. The system sizes in
simulations are 64, 90, 128, 256, 360, and 512. Although,
best collapse occurs fora51.03, we cannot exclude the po
sibility that a51. The calculateda is not decisive in one
dimension since Eq.~13! is obtained from the DRG calcula
tion only up to one-loop order. Still, SC-RSOS model is n

FIG. 2. One-loop contribution to the propagator.

FIG. 3. One-loop contribution to thel vertex.
3-3
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believed to share the same universality class as the V
equation, because these two systems have different sym
try.

In summary, we studied four different kinds of the RSO
type microscopic discrete models classified by up-do

FIG. 4. Log-log plot of the data collapse for Monte Carlo sim
lation of the SC-RSOS model. The best collapse occurs foa
51.03 andz52a1153.06.
a

,

-

01010
D
e-

-
n

symmetry and conservation, using both analytical and
merical methods. We confirmed the previous results that
A-RSOS model belongs to the KPZ class, the AC-RS
model to the VLD class, the S-RSOS model to the EW cla
We also derived the stochastic differential equations for
SC-RSOS model analytically and found that the SC-RS
model belongs to the new class which we call ‘‘conserv
cubic’’ ~CC! class. The SDE corresponding to the SC-RS
model of the CC class has the conserved form of the E
term ¹2(¹2h) and the Gaussian noise~not conserved form!
similar to the SDE of the VLD class, but it has the conserv
form of the cubic term¹2

“•(“h)3, which is absent in the
EW class, in the KPZ class, and in the VLD class. The co
served cubic term is less relevant than the conserved K
term ¹2(“h)2 in the VLD equation and is irrelevant in a
dimensions in the EW and KPZ equations. In addition
identifying the corresponding SDEs for each microsco
model, we found coefficients of the EW term, the KPZ ter
the VLD term, and the CC term. Coefficients of the EW a
KPZ terms have been shown to be consistent with the pr
ous numerical study@21#. Verifying the consistency of coef
ficients of the VLD and CC terms by the numerical stu
will be a future challenge for the interested.
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